Спутниковый навигатор.  Принципы спутниковой навигации. Основные характеристики систем навигационных спутников

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Спутниковой навигацией пользуются водители, велосипедисты, туристы – даже любители утренних пробежек отслеживают собственный маршрут при помощи спутников. Вместо того чтобы расспрашивать прохожих, как найти нужный дом, большинство предпочитают достать смартфон и задать этот вопрос ГЛОНАСС или GPS. Несмотря на то, что модули спутниковой навигации установлены в каждом смартфоне и в большинстве спортивных часов, только один человек из десяти понимает, как работает эта система и как в море девайсов с функциями GPS/ГЛОНАСС найти подходящий.

Как устроена спутниковая навигационная система

Аббревиатура GPS расшифровывается как Global Positioning System: «система глобального позиционирования», если переводить дословно. Идея использовать спутники на околоземной орбите для определения координат наземных объектов появилась в 1950-е, сразу после того, как Советский Союз запустил первый искусственный спутник. Американские ученые отслеживали спутниковый сигнал и обнаружили, что его частота меняется, когда спутник приближается или отдаляется. Поэтому, зная свои точные координаты на Земле, можно вычислить и точное расположение спутника. Это наблюдение и дало толчок для разработки глобальной системы расчета координат.

Первоначально открытием заинтересовался флот – разработку начала военно-морская лаборатория, но со временем было решено создать единую систему для всех вооруженных сил. Первый спутник GPS вывели на орбиту 1978-м. Сейчас сигналы передают около тридцати спутников. Когда навигационная система заработала, военные ведомства США сделали подарок всем жителям планеты – открыли свободный доступ к спутникам, так что каждый может пользоваться Global Positioning System бесплатно, был бы приемник.

Вслед за американцами Роскосмос создал свою систему: первый спутник ГЛОНАСС вышел на орбиту в 1982 году. ГЛОНАСС – Глобальная навигационная спутниковая система, работающая по тому же принципу, что и американская. Сейчас на орбите находятся 24 российских спутника, которые обеспечивают координирование.

Чтобы воспользоваться одной из систем, а лучше двумя одновременно, нужен приемник, который будет получать сигналы от спутников, а также компьютер для расшифровки этих сигналов: местоположение объекта вычисляется, исходя из интервалов между полученными сигналами. Точность вычислений – плюс-минус 5 м.

Чем больше спутников «видит» устройство, тем больше информации может предоставить. Для определения координат навигатору достаточно увидеть всего два спутника, но если он запеленгует хотя бы четыре спутника, девайс сможет сообщить, например, скорость передвижения объекта. Поэтому современные навигационные устройства считывают все больше параметров:

  • Географические координаты объекта.
  • Скорость его передвижения.
  • Высоту над уровнем моря.

Какие могут возникнуть погрешности в работе GPS/ГЛОНАСС

Спутниковая навигация хороша тем, что доступна круглосуточно из любой точки планеты. Где бы вы ни находились, если у вас есть приемник – вы сможете определить координаты и построить маршрут. Однако на практике сигнал спутников могут глушить физические препятствия или погодные катаклизмы: если вы проезжаете подземный туннель, а сверху к тому же бушует шторм, сигнал может не «добить» до приемника.

Эту проблему решили за счет технологии A-GPS: она предполагает, что приемник обращается через альтернативные каналы связи к серверу. Тот, в свою очередь, использует данные, полученные от спутников. Благодаря этому можно пользоваться навигационной системой в помещениях, туннелях, в непогоду. Технология A-GPS рассчитана на смартфоны и прочие персональные устройства, поэтому, выбирая навигатор или смартфон, уточняйте, поддерживает ли он этот стандарт. Так вы сможете быть уверенными, что устройство не подведет в ответственный момент.

Владельцы смартфонов иногда жалуются, что навигатор работает не точно или периодически «отключается», не определяет координаты. Как правило, это связано с тем, что в большинстве смартфонов функция GPS/ГЛОНАСС по умолчанию отключена. Для расчетов координат устройство использует сотовые вышки или беспроводной интернет. Проблема решается настройкой смартфона, активацией нужного способа определения координат. Также может потребоваться калибровка компаса или сброс настроек навигатора.

Виды навигаторов

  • Автомобильные. Навигационные система, завязанная на спутниках ГЛОНАСС или их американских аналогах, может быть частью бортового компьютера авто, но чаще покупают отдельные устройства. Они не только определяют координаты машины и позволяют без проблем добраться из пункта А в пункт Б, но также защищают от угона. Даже если злоумышленники угонят машину, ее можно будет отследить по маячку. Плюс специальных устройств для авто еще и в том, что они предусматривают установку антенны – за счет антенны можно усилить ГЛОНАСС-сигнал.
  • Туристические. Если в автомобильный навигатор можно установить специальный набор карт, то к туристическим устройствам предъявляются более строгие требования: современные модели допускают использование расширенного набора карт. Однако самый простой туристический девайс – это только приемник сигнала с простейшим компьютером. Он может даже не отмечать координаты на карте, и тогда потребуется бумажная карта с навигационной сеткой. Впрочем, сейчас такие устройства покупают только из соображений экономии.
  • Смартфоны, планшеты с GPS/ГЛОНАСС-приемником. Смартфоны также позволяют загрузить расширенный набор карт. Их можно использовать, как автомобильные и туристические навигаторы, главное – установить приложение и загрузить необходимые карты. Многие из полезных навигационных программ – бесплатные, но за некоторые нужно заплатить небольшую сумму.

Навигационные программы для смартфонов

Одна из самых простых программ, рассчитанных на тех, кто не хочет вникать в функционал: MapsWithMe. Она позволяет загрузить из сети карту нужного региона, чтобы затем пользоваться ею, даже если соединения с интернетом не будет. Программа покажет местоположение на карте, отыщет отмеченные на этой карте объекты – их можно сохранять в закладки и пользоваться потом быстрым поиском. На этом функционал исчерпывается. Программа использует только векторные карты – другие форматы загрузить нельзя.

Владельцы устройств на Android могут воспользоваться программой OsmAnd. Она подходит водителям и пешеходным туристам, поскольку позволяет автоматически проложить маршрут по автодорогам или горным тропинкам. ГЛОНАСС-навигатор будет вести вас по маршруту голосовыми командами. Кроме векторных карт, можно использовать растровые, а также отмечать путевые точки и записывать треки.

Ближайшая альтернатива OsmAnd – приложение Locus Map. Оно подойдет для пешеходных туристов, поскольку напоминает классическое навигационное устройство для туристов, какие были в ходу до появления смартфонов. Использует и векторные, и растровые карты.

Туристические устройства

Смартфоны и планшеты могут заменить специальное GPS/ГЛОНАСС-устройство для туризма, но у такого решения есть свои недостатки. С одной стороны, если есть смартфон, не нужно покупать никаких дополнительных девайсов. На большом ярком экране легко работать с картой, выбор приложений широкийо – мы указали всего несколько программ, охватить все предложения невозможно. Но у смартфона есть и недостатки:

  • Быстро разряжается. В среднем устройство работает сутки, а в режиме постоянного поиска координат – и того меньше.
  • Требует бережного обращения. Конечно, существуют защищенные смартфоны, но кроме того, что они дорогие, надежность такого смартфона все равно не сравнится со специальным туристическим ГЛОНАСС-устройством. Оно может быть полностью водонепроницаемым.

Для многодневных походов по дикой местности разработаны специализированные устройства, во влагозащищенных корпусах и с мощными аккумуляторами. Однако при выборе такого прибора важно уточнять, чтобы он поддерживал и векторные, и растровые карты. Растровая карта – это изображение, привязанное к координатам. Вы можете взять бумажную карту, отсканировать ее, связать с координатами ГЛОНАСС – и получится растровая карта. Векторные карты – не картинка, но набор объектов, которые программа размещает на изображении. Система позволяет запустить поиск по объектам, но самостоятельно создать подобную схему сложно.

«Navstar-GPS», спутник второго поколения

Спутниковая система навигации - комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты) и времени, а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов.

Основные элементы

Основные элементы спутниковой системы навигации:

  • Орбитальная группировка, состоящая из нескольких (от 2 до 30) спутников , излучающих специальные радиосигналы ;
  • Наземная система управления и контроля (наземный сегмент), включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах ;
  • Приёмное клиентское оборудование («спутниковые навигаторы »), используемое для определения координат;
  • Опционально: наземная система радиомаяков , позволяющая значительно повысить точность определения координат.
  • Опционально: информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат.

Принцип работы

Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников , положение которых известно с большой точностью . Таблица положений всех спутников называется альманахом , которым должен располагать любой спутниковый приёмник до начала измерений . Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел - мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.

Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн . Для осуществления возможности измерения времени распространяемого радиосигнала каждый спутник навигационной системы излучает сигналы точного времени, используя точно синхронизированные с системным временем атомные часы . При работе спутникового приёмника его часы синхронизируются с системным временем, и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Все остальные параметры движения (скорость, курс, пройденное расстояние) вычисляются на основе измерения времени, которое объект затратил на перемещение между двумя или более точками с определёнными координатами.

В реальности работа системы происходит значительно сложнее. Ниже перечислены некоторые проблемы, требующие специальных технических приёмов по их решению:

  • Отсутствие атомных часов в большинстве навигационных приёмников. Этот недостаток обычно устраняется требованием получения информации не менее чем с трёх (2-мерная навигация при известной высоте) или четырёх (3-мерная навигация) спутников; (При наличии сигнала хотя бы с одного спутника можно определить текущее время с хорошей точностью).
  • Неоднородность гравитационного поля Земли, влияющая на орбиты спутников;
  • Неоднородность атмосферы , из-за которой скорость и направление распространения радиоволн может меняться в некоторых пределах;
  • Отражения сигналов от наземных объектов, что особенно заметно в городе;
  • Невозможность разместить на спутниках передатчики большой мощности, из-за чего приём их сигналов возможен только в прямой видимости на открытом воздухе.

Применение систем навигации

Кроме навигации, координаты, получаемые благодаря спутниковым системам, используются в следующих отраслях:

  • Геодезия : с помощью систем навигации определяются точные координаты точек
  • Картография : системы навигации используется в гражданской и военной картографии
  • Навигация : с применением систем навигации осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта : с помощью систем навигации ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь : первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах (например, США) это используется для оперативного определения местонахождения человека, звонящего 911. В России в 2010 году начата реализация аналогичного проекта - Эра-ГЛОНАСС.
  • Тектоника , Тектоника плит : с помощью систем навигации ведутся наблюдения движений и колебаний плит
  • Активный отдых : существуют различные игры, где применяются системы навигации, например, Геокэшинг и др.
  • Геотегинг : информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам

Современное состояние

В настоящее время работают или готовятся к развёртыванию следующие системы спутниковой навигации:

GPS

Принадлежит министерству обороны США. Этот факт, по мнению некоторых государств, является её главным недостатком. Устройства поддерживающие навигацию по GPS являются самыми распространёнными в мире. Также известна под более ранним названием NAVSTAR.

ГЛОНАСС

Принадлежит министерству обороны России. Система, по заявлениям разработчиков наземного оборудования, будет обладать некоторыми техническими преимуществами по сравнению с GPS. После 1996 года спутниковая группировка сокращалась и к 2002 году практически полностью пришла в упадок. Была полностью восстановлена только в конце 2011 года. Отмечается малая распространенность клиентского оборудования. К 2025 году предполагается глубокая модернизация системы.

Бэйдоу

Развёртываемая Китаем подсистема GNSS предназначена для использования только в этой стране. Особенность - небольшое количество спутников, находящихся на геостационарной орбите. В настоящий момент выведено на орбиту Земли восемь навигационных спутников. Согласно планам, к 2012 году она сможет покрывать Азиатско-Тихоокеанский регион, а к 2020 году, когда количество спутников будет увеличено до 35, система «Бэйдоу» сможет работать как глобальная. Реализация данной программы началась в 2000 году. Первый спутник вышел на орбиту в 2007-ом.

Galileo

Европейская система, находящаяся на этапе создания спутниковой группировки. Планируется полностью развернуть спутниковую группировку к 2020 году.

IRNSS

Индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в этой стране. Первый спутник был запущен в 2008 году.

QZSS

Первоначально японская QZSS была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. Первый запуск спутника для QZSS был запланирован на 2008 г. В марте 2006 японское правительство объявило, что первый спутник не будет предназначен для коммерческого использования и будет запущен целиком на бюджетные средства для отработки принятых решений в интересах обеспечения решения навигационных задач. Только после удачного завершения испытаний первого спутника начнётся второй этап и следующие спутники будут в полной мере обеспечивать запланированный ранее объём услуг.

Основные характеристики систем навигационных спутников

параметр, способ СРНС ГЛОНАСС GPS NAVSTAR TEN GALILEO
Число НС (резерв) 24 (3) 24 (3) 27 (3)
Число орбитальных плоскостей 3 6 3
Число НС в орбитальной плоскости 8 4 9
Тип орбит Круговая (e=0±0.01) Круговая Круговая
Высота орбиты, КМ 19100 20183 23224
Наклонение орбиты, градусы 64.8±0.3 ~55 (63) 56
Номинальный период обращения по среднему солнечному времени 11ч 15мин 44±5с ~11ч 58 мин 14 ч 4 мин. и 42 с.
Способ разделения сигналов НС Частотный Кодовый Кодово-частотный
Несущие частоты радиосигналов, МГц L1=1602.5625…1615.5 L2=1246.4375…1256.5 L1=1575.42 L2=1227.60 L5=1176.45 E1=1575.42 E5=1191.795 E5A=1176.46 E5B=1207.14 E6=12787.75
период повторения дальномерного кода (или его сегмента) 1 мс 1 мс (С/А-код) нет данных
тип дальномерного кода М-последовательность (СТ-код 511 зн.) Код Голда (С/А-код 1023 зн.) М-последовательность
тактовая частота дальномерного кода, МГц 0.511 1.023 (С/А-код) 10.23 (P,Y-код) Е1=1.023 E5=10.23 E6=5.115
Скорость передачи цифровой информации(соответственно СИ- и D- код) 50 зн/с (50Гц) 50 зн/с (50Гц) 25, 50, 125, 500, 100ГЦ
Длительность суперкадра, Мин 2,5 12,5 5
Число кадров в суперкадре 5 25 нет данных
Число строк в кадре 15 5 нет данных
Система отсчета времени UTS (SU) UTS (USNO) UTS (GST)
Система отсчета координат ПЗ-90/ПЗ90.2 WGS-84 ETRF-00
Тип эфемирид Геоцентрические координаты и их производные Модифицированные кеплеровы элементы
Сектор излучения от направления на центр земли ±19 в 0 L1=±21 в 0 L2=±23.5 в 0 нет данных
Сектор Земли ±14.1 в 0 ±13.5 в 0 нет данных

Технические детали работы систем

Рассмотрим некоторые особенности основных действующих систем спутниковой навигации (GPS и ГЛОНАСС):

Дифференциальное измерение

Отдельные модели спутниковых приёмников позволяют производить т. н. «дифференциальное измерение» расстояний между двумя точками с большой точностью (сантиметры). Для этого измеряется положение навигатора в двух точках с небольшим промежутком времени. При этом, хотя каждое такое измерение имеет точность порядка 10-15 метров без наземной системы корректировки и 10-50 см с такой системой, измеренное расстояние имеет погрешность намного меньшую, так как факторы, мешающие измерению (погрешность орбит спутников, неоднородность атмосферы в данном месте Земли и т. д.) в этом случае взаимно вычитаются. Кроме того, есть несколько систем, которые посылают уточняющую информацию («дифференциальную поправку к координатам»), позволяющую повысить точность измерения координат приёмника до десяти сантиметров. Дифференциальная поправка пересылается либо с геостационарных спутников, либо с наземных базовых станций, может быть платной (расшифровка сигнала возможна только одним определённым приёмником после оплаты «подписки на услугу») или бесплатной.

См. также

  • Псевдоспутник

Примечания

Ссылки

Международный форум по спутниковой навигации Мероприятие, посвящённое вопросам спутниковой навигации

Мобильный ГИС для предприятий лесного хозяйства GPS навигация, контроль лесоустроительных данных по спутниковым снимкам, карта лесхоза, таксационное описание в мобильном телефоне.

Практически каждый современный телефон уже имеет встроенный модуль GPS -приемника, с помощью которого имеется возможность достаточно точно определить свое местоположение на планете Земля. Для работы и точного определения местоположения GPS не требуется интернет и вышки мобильных сетей. Система может работать даже посреди пустыни вдалеке от цивилизации. Мы знаем, что это возможно благодаря спутникам, - но как именно это работает?

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт.

24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. Практически всегда на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.


Поскольку известно, что каждый из спутников делает по два оборота вокруг планеты за сутки, то становиться нетрудно вычислить, что скорость их движения составляет приблизительно 14 000 км/ч. Само расположение спутников, так же как и наклон их орбит, отнюдь не случайно: они расположены так, чтобы из любой открытой точки планеты было видно хотя бы четыре спутника - именно таково минимальное количество, необходимое для определения местоположения объекта на Земле. Почему именно четыре и как это работает?

Чтобы измерить какое-то очень длинное расстояние, мы можем послать сигнал и замерить время, за которое он достигнет нужной точки либо отразится от нее и дойдет до нас снова (главное при этом точно знать скорость движения сигнала). Во втором случае время придется делить на два, поскольку сигнал прошел удвоенное расстояние. Этот способ носит название эхолокация, и спектр его применения весьма широк: начиная от изучения формы морского дна (здесь сигналом выступает ультразвук) и заканчивая радарами (сигнал - электромагнитные волны).

Проблема в том, что при использовании этого способа мы должны заранее знать, где находится приемник. В случае с системой GPS приемником сигнала являетесь именно вы, стоящий на Земле. Спутник не имеет никакого представления о вашем местоположении, он не знает, где вы, и никогда не узнает, поэтому отправляет сигнал сразу на всю поверхность планеты под ним. В этом сигнале он кодирует информацию о том, где расположен сам, а также в какое время по его собственным часам сигнал был отправлен, и на этом его работа заканчивается.

GPS -модуль у вас в руках получил координаты спутника и информацию о времени отправки сигнала. Программа в вашем телефоне умножает скорость распространения сигнала (то есть скорость света) на разницу между временем получения и временем отправки, высчитывая таким образом расстояние до каждого спутника. Если бы часы модуля были в точности синхронизированы с часами всех сателлитов, то понадобилось бы еще два спутника, чтобы определить местоположение с помощью так называемой триангуляции.

Чтобы понять принцип действия триангуляции, давайте на секунду перейдем в двухмерное пространство. Представьте себе две точки на плоскости, расположенные на известном расстоянии друг от друга, допустим 5 метров. Вы также знаете, что какая-то новая точка находится, в свою очередь, на известных расстояниях от первых двух - например 3 и 4 метра соответственно. Чтобы найти эту новую точку, вы можете провести две окружности с радиусами 3 и 4 метра и центрами в первой и второй точках соответственно. Две полученные окружности пересекутся ровно в двух точках, одна из которых и будет искомой.

Вернемся в трехмерное пространство. Теперь нам уже нужны три опорные точки, которыми являются наши спутники, и «чертить» вокруг них мы будем не окружности, а сферы. Все три сферы сразу в общем случае будут иметь две точки пересечения, но одна из них находится «над» местом расположения спутников, очень высоко в космосе - она нам явно не нужна. А вот вторая - это как раз ваше местоположение.

Для измерения местоположения в пространстве необходимо знать точное время и иметь точный инструмент для его измерения.

Реальная задача осложняется тем обстоятельством, что время на часах вашего телефона не совпадает с тем, что показывают часы спутников, и ваши часы являются на несколько порядков менее точными. Вообще говоря, время создает несколько дополнительных сложностей в решении этой проблемы. Так, например, спутники подвержены эффектам релятивистского и гравитационного искажения времени. На самом деле скорость хода часов, согласно теории относительности, зависит в том числе от силы гравитации в той точке, где эти часы расположены, а также от скорости их движения.

На высоте 20 000 километров над Землей гравитация достаточно слаба, а спутники летают, как мы уже разобрались, довольно быстро. Из-за суммы этих эффектов часы приходится корректировать в общей сложности на 38 миллисекунд за сутки. Если кажется, что это мало, напомню, что электромагнитный сигнал, движущийся со скоростью света, пройдет за это время приблизительно 11 000 км - примерно такой и может быть погрешность при определении координат.

Вторая проблема - точность самих часов. При указанных скоростях сигналов каждая миллионная доля секунды, измеренная с погрешностью, может спровоцировать большие ошибки. Из-за этого спутники старого формата позволяют определить местоположение не очень точно и могут «обмануть» на целых 10 метров. Начиная с 2010-го на замену старым запускают новые спутники, оснащенные атомными часами, и их погрешность уменьшилась до 1 метра.

Другой путь решения проблемы - специальные наземные станции коррекции. Они используются на территории некоторых стран и принцип их работы таков: принимая данные о расположении того или иного объекта, они корректируют их, и в результате пользователь гаджета получает более достоверную информацию о собственном местоположении.

Чем больше источников сигнала, тем точнее результат измерения, вот почему в мегаполисе ориентироваться по навигатору будет проще, чем в пустыне.

Однако атомные часы – устройство громоздкое и дорогостоящее, поэтому, чтобы решить проблему времени приемника, нужен еще один спутник. Он тоже передает информацию о своем местоположении и моменте отправки сигнала. И теперь наше пространство становится не трех-, а четырехмерным. Неизвестными являются широта, долгота, высота и время приемника в момент отправки сигналов. Положение в этих четырех измерениях нам и нужно определить, для чего по аналогии с двухмерным и трехмерным пространствами нам нужны именно четыре спутника.

Конечно же, в реальности хорошо, когда удается «поймать» сигнал от большего числа источников, и в крупных городах и населенных районах с этим проблемы нет: можно легко увидеть одновременно десяток сателлитов, которые обеспечат достаточно высокую для бытового использования точность.

Однако начальный поиск спутников тоже не самая простая задача. В старых аппаратах устройству могло потребоваться немало времени, вплоть до нескольких минут, чтобы уловить и разобрать сигнал от нужного числа космических объектов. Тогда это называлось «холодный старт», и для того, чтобы ускорить процесс, придумали получать данные о текущем местоположении небесных тел из интернета. Но при перемещении приемника на большое расстояние (десятки километров) или при очень долгом бездействии «холодный старт» приходилось производить заново. В современных устройствах модуль периодически включается сам, обновляя информацию, поэтому подобной проблемы больше нет.

Кстати говоря, до 2000 года точность для гражданских лиц была искусственно занижена, и узнать свое местоположение позволялось не ближе, чем в 100 метрах от реального. Поскольку GPS создавалась, финансируется и поддерживается министерством обороны США , военные хотели иметь определенное преимущество. С развитием и все более активным внедрением технологии в жизнь гражданского населения это искусственное ограничение было убрано.

Спутник не получает данных ни о каких GPS -устройствах на поверхности Земли и в воздушном пространстве, поэтому услуга бесплатная. Мы просто не сможем узнать, кто конкретно ей пользуется. Выходит, рецепт решения общечеловеческой проблемы под кодовым названием «А где я нахожусь?» чрезвычайно прост: односторонняя связь и нехитрые математические расчеты.

Сегодня область применения системы глобального позиционирования GPS достаточно обширна. Всё чаще GPS -приемники встраивают в мобильные телефоны и коммуникаторы, в автомобили, часы и даже в собачьи ошейники. Люди привыкают к такому благу как GPS навигация, и пройдет совсем немного времени как они уже не смогут обойтись без нее. Именно поэтому стоит сказать пару слов о недостатках GPS .

Недостатками GPS навигации является то, что при определенных условиях сигнал может не доходить до GPS -приемника, поэтому практически невозможно определить свое точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле.

Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приема сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования.

Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приему сигналов GPS .

Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS -приемника, но и своим собственным глазам.

Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Прецеденты уже были.

У системы GPS есть менее популярная и известная альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), и каждая из этих систем стремится получить широкое распространение.

НАВИГАЦИОННЫЕ РАДИОСИГНАЛЫ

Принцип работы системы
навигации

НАВИГАЦИОННОЕ СООБЩЕНИЕ

CИСТЕМЫ КООРДИНАТ

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СНИЖЕНИЕ ТОЧНОСТИ

СИСТЕМЫ ВРЕМЕНИ

ПОВЫШЕНИЕ ТОЧНОСТИ НАВИГАЦИИ

Основные элементы спутниковой системы навигации

Космический сегмент

Космический сегмент, состоящий из навигационных спутников, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника - формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника.

Наземный сегмент

В состав наземного сегмента входят космодром, командно-измерительный комплекс и центр управления. Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск.

Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами.

Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы.

Пользовательский сегмент

В пользовательский сегмент входит аппаратура потребителей. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.

Принцип работы системы навигации

Современная спутниковая навигация основывается на использовании принципа беззапросных дальномерных измерений между навигационными спутниками и потребителем. Это означает, что потребителю передается в составе навигационного сигнала информация о координатах спутников. Одновременно (синхронно) производятся измерения дальностей до навигационных спутников. Способ измерений дальностей основывается на вычислении временных задержек принимаемого сигнала от спутника по сравнению с сигналом, генерируемым аппаратурой потребителя.

На рисунке приведена схема определений местоположения потребителя с координатами x, y, z на основе измерений дальности до четырех навигационных спутников. Цветными яркими линиями показаны окружности, в центре которых расположены спутники. Радиусы окружностей соответствуют истинным дальностям, т.е. истинным расстояниям между спутниками и потребителем. Цветные неяркие линии - это окружности с радиусами, соответствующими измеренным дальностям, которые отличаются от истинных и поэтому называются псевдодальностями. Истинная дальность отличается от псевдодальности на величину, равную произведению скорости света на уход часов b, т.е. величину смещения часов потребителя по отношению к системному времени. На рисунке показан случай, когда уход часов потребителя больше нуля – то есть часы потребителя опережают системное время, поэтому измеренные псевдодальности меньше истинных дальностей.

В идеальном варианте, когда измерения производятся точно и показания часов спутников и потребителя совпадают для определения положения потребителя в пространстве достаточно произвести измерения до трех навигационных спутников.

В действительности показания часов, которые входят в состав навигационной аппаратуры потребителя, отличаются от показаний часов на борту навигационных спутников. Тогда для решения навигационной задачи к неизвестным ранее параметрам (три координаты потребителя) следует добавить еще один - смещение между часами потребителя и системным временем. Отсюда следует, что в общем случае для решения навигационной задачи потребитель должен «видеть», как минимум, четыре навигационных спутника.

Системы координат

Для функционирования навигационных спутниковых систем необходимы данные о параметрах вращения Земли, фундаментальные эфемериды Луны и планет, данные о гравитационном поле Земли, о моделях атмосферы, а также высокоточные данные об используемых системах координат и времени.

Геоцентрические системы координат - системы координат, начало которых совпадает с центром масс Земли. Их также называют общеземными или глобальными.

Для построения и поддержания общеземных систем координат используются четыре основных метода космической геодезии:

  • радиоинтерферометрия со сверхдлинной базой (РСДБ),
  • лазерная локация космических аппаратов (SLR),
  • доплеровские измерительные системы (DORIS),
  • навигационные измерения космических аппаратов ГЛОНАСС и других ГНСС.

Международная земная система координат ITRF является эталоном земной системы координат.

В современных навигационных спутниковых системах используются различные, как правило национальные, системы координат.

Системы времени

В соответствии с решаемыми задачами применяются два типа систем времени: астрономические и атомные.

Системы астрономического времени основаны на суточном вращении Земли. Эталоном для построения шкал астрономического времени служат солнечные или звездные сутки, в зависимости от точки небесной сферы, по которой производится измерение времени.

Всемирное время UT (Universal Time) – это среднее солнечное время на гринвическом меридиане.

Всемирное координированное время UTC синхронизировано с атомным временем и является международным стандартом, на котором базируется гражданское время.

Атомное время (TAI) - время, в основу измерения которого положены электромагнитные колебания, излучаемые атомами или молекулами при переходе из одного энергетического состояния в другое. В 1967 году на Генеральной конференции мер и весов атомная секунда представляет собой переход между сверхтонкими уровнями F=4, M=0 и F=3, M=0 основного состояния 2S1/2 атома цезия-133, не возмущённого внешними полями, и что частоте этого перехода приписывается значение 9 192 631 770 Герц.

Спутниковая радионавигационная система является пространственно-временной системой с зоной действия, охватывающей всё околоземное пространство, и функционирует в собственном системном времени. Важное место в ГНСС отводится проблеме временной синхронизации подсистем. Временная синхронизация важна и для обеспечения заданной последовательности излучения сигналов всех навигационных спутников. Она обусловливает возможность применения пассивных дальномерных (псевдодальномерных) методов измерений. Наземный командно-измерительный комплекс обеспечивает синхронизацию шкал времени всех навигационных КА путем их сверки и коррекции (непосредственной и алгоритмической).


Навигационные радиосигналы

Навигационных радиосигналы

При выборе типов и параметров сигналов, используемых в спутниковых радионавигационных системах, учитывается целый комплекс требований и условий. Сигналы должны обеспечивать высокую точность измерения времени прихода (задержки) сигнала и его доплеровской частоты и высокую вероятность правильного декодирования навигационного сообщения. Также сигналы должны иметь низкий уровень взаимной корреляции для того, чтобы сигналы разных навигационных космических аппаратов надежно различались навигационной аппаратурой потребителей. Кроме того, сигналы ГНСС должны максимально эффективно использовать отведенную полосу частот при малом уровне внеполосного излучения, обладать высокой помехоустойчивостью.

Почти все существующие навигационные спутниковые системы, за исключением индийской системы NAVIC, используют для передачи сигналов диапазон L. Система NAVIC будет излучать сигналы дополнительно и в S диапазоне.

Диапазоны, занимаемые различными навигационными спутниковыми системами

Виды модуляции

По мере развития спутниковых навигационных систем изменялись используемые виды модуляции радиосигналов.
В большинстве навигационных систем изначально использовались исключительно сигналы с бинарной (двухпозиционной) фазовой модуляцией – ФМ-2 (BPSK). В настоящее время в спутниковой навигации начался переход к новому классу модулирующих функций, получивших название BOC (Binary Offset Carrier)-сигналов.

Принципиальное отличие BOC-сигналов от сигналов с ФМ-2 состоит в том, что символ модулирующей ПСП BOC-сигнала представляет собой не прямоугольный видеоимпульс, а отрезок меандрового колебания, включающий в себя некоторое постоянное число периодов k. Поэтому сигналы с BOC-модуляцией часто называют меандровыми шумоподобными сигналами.

Использование сигналов с BOC-модуляцией повышает потенциальную точность измерения и разрешающую способность по задержке. Одновременно с этим, уменьшается уровень взаимных помех при совместном функционировании навигационных систем, использующих традиционные и новые сигналы.

Навигационное сообщение

Каждый спутник принимает с наземных станций управления навигационную информацию, которая передается обратно пользователям в составе навигационного сообщения. Навигационное сообщение содержит разные типы информации, необходимые для того, чтобы определить местоположение пользователя и синхронизовать его шкалу времени с национальным эталоном.

Типы информации навигационного сообщения
  • Эфемеридная информация, необходимая для вычисления координат спутника с достаточной точностью
  • Погрешность расхождения бортовой шкалы времени относительно системной шкалы времени для учета смещения времени космического аппарата при навигационных измерениях
  • Расхождение между шкалой времени навигационной системы и национальной шкалой времени, для решения задачи синхронизации потребителей
  • Признаки пригодности с информацией о состоянии спутника для оперативного исключения спутников с выявленными отказами из навигационного решения
  • Альманах с информацией об орбитах и состоянии всех аппаратов в группировке для долгосрочного грубого прогноза движения спутников и планирования измерений
  • Параметры модели ионосферы, необходимые одночастотным приемникам для компенсации погрешностей навигационных измерений, связанных с задержкой распространения сигналов в ионосфере
  • Параметры вращения Земли для точного пересчета координат потребителя в разных системах координат

Признаки пригодности обновляются в течение нескольких секунд при обнаружении отказа. Параметры эфемерид и времени, как правило, обновляются не чаще, чем раз в полчаса. При этом период обновления для разных систем сильно отличается и может достигать четырех часов, в то время как альманах обновляется не чаще, чем раз в день.

По своему содержанию навигационное сообщение подразделяется на оперативную и неоперативную информацию и передается в виде потока цифровой информации (ЦИ). Изначально во всех навигационных спутниковых системах использовалась структура вида «суперкадр/кадр/строка/слово». При этой структуре поток ЦИ формируется в виде непрерывно повторяющихся суперкадров, суперкадр состоит из нескольких кадров, кадр состоит из нескольких строк.
В соответствии со структурой «суперкадр/кадр/строка/слово» формировались сигналы системы БЕЙДОУ, ГАЛИЛЕО (кроме E6), GPS (LNAV данные, L1), сигналы ГЛОНАСС с частотным разделением. В зависимости от системы, размеры суперкадров, кадров и строк могут отличаться, но принцип формирования остается похожим.

Сейчас в большинстве сигналов используется гибкая строковая структура. В этой структуре навигационное сообщение формируется в виде переменного потока строк различных типов. Каждый тип строки имеет свою уникальную структуру и содержит определённый тип информации (указаны выше). НАП выделяет из потока очередную строку, определяет её тип и в соответствии с типом выделяет информацию, содержащуюся в этой строке.

Гибкая строковая структура навигационного сообщения позволяет значительно более эффективно использовать пропускную способность канала передачи данных. Но главным достоинством навигационного сообщения с гибкой строковой структурой является возможность её эволюционной модернизации при соблюдении принципа обратной совместимости. Для этого в ИКД для разработчиков НАП специально указывается, что если НАП в навигационном сообщении встречает строки неизвестных ей типов, то она должна их игнорировать. Это позволяет добавлять в процессе модернизации ГНСС к ранее существовавшим типам строк строки с новыми типами. НАП, выпущенная ранее, игнорирует строки с новыми типами и, следовательно, не использует те новации, которые вводятся в процессе модернизации ГНСС, но при этом её работоспособность не нарушается.
Сообщения сигналов ГЛОНАСС с кодовым разделением имеют строковую структуру.

Факторы, влияющие на снижение точности

На точность определения потребителем своих координат, скорости движения и времени влияет множество факторов, которые можно разделить на категории:

  1. Системные погрешности, вносимые аппаратурой космического комплекса

    Погрешности, связанные с функционированием бортовой аппаратуры спутника и наземного комплекса управления ГНСС обусловлены в основном несовершенством частотно-временного и эфемеридного обеспечения.

  2. Погрешности, возникающие на трассе распространения сигнала от космического аппарата до потребителя

    Погрешности обусловлены отличием скорости распространения радиосигналов в атмосфере Земли от скорости их распространения в вакууме, а также зависимостью скорости от физических свойств различных слоёв атмосферы.

  3. Погрешности, возникающие в аппаратуре потребителя

    Аппаратурные погрешности подразделяются на систематическую погрешность аппаратурной задержки радиосигнала в АП и флуктуационные погрешности, обусловленные шумами и динамикой потребителя.

Кроме того, на точность навигационно-временного определения существенно влияет взаимное расположение навигационных спутников и потребителя.
Количественной характеристикой погрешности определения местоположения и поправки показаний часов, связанной с особенностями пространственного положения спутника и потребителя, служит так называемый геометрический фактор Γ Σ или коэффициент геометрии. В англоязычной литературе используется обозначение GDOP - Geometrical delusion of precision.
Геометрический фактор Γ Σ показывает, во сколько раз происходит уменьшение точности измерений и зависит от следующих параметров:

  • Г п - геометрический фактор точности определения местоположения потребителя ГНСС в пространстве.
    Соответствует PDOP - Position delusion of precision.
  • Г г - геометрический фактор точности определения местоположения потребителя ГНСС по горизонтали.
    Соответствует HDOP - Horizontal delusion of precision.
  • Г в - геометрический фактор точности определения местоположения потребителя ГНСС по вертикали.
    Соответствует VDOP - Vertical delusion of precision.
  • Г т - геометрический фактор точности определения поправки показаний часов потребителя ГНСС.
    Соответствует TDOP - Time delusion of precision.

Повышение точности навигации

Существующие в настоящее время глобальные навигационные спутниковые системы (ГНСС) GPS и ГЛОНАСС позволяют удовлетворить потребности в навигационном обслуживании обширный круг потребителей. Но существует ряд задач, которые требуют высоких точностей навигации. К этим задачам относятся: взлет, заход на посадку и посадка самолетов, судовождение в прибрежных водах, навигация вертолетов и автомобилей и другие.

Классическим методом повышения точности навигационных определений является использование дифференциального (относительного) режима определений.

Дифференциальный режим предполагает использование одного или более базовых приёмников, размещённых в точках с известными координатами, которые одновременно с приёмником потребителя (подвижным, или мобильным) осуществляют приём сигналов одних и тех же спутников.

Повышение точности навигационных определений достигается за счёт того, что ошибки измерения навигационных параметров потребительского и базовых приёмников являются коррелированными. При формировании разностей измеряемых параметров большая часть таких погрешностей компенсируется.

В основе дифференциального метода лежит знание координат опорной точки – контрольно-корректирующей станции (ККС) или системы опорных станций, относительно которых могут быть вычислены поправки к определению псевдодальностей до навигационных спутников. Если эти поправки учесть в аппаратуре потребителя, то точность расчета, в частности, координат может быть повышена в десятки раз.

Для обеспечения дифференциального режима для большого региона – например, для России, стран Европы, США - передача корректирующих дифференциальных поправок осуществляется при помощи геостационарных спутников. Системы, реализующие такой подход, получили название широкозонные дифференциальные системы.

Вверх